Representation of numbers with four 4's
Remark
There is a convention I applied to identities below, especially for the numbers beyond 100. As the table grew, some awkward formulas became more common. In order to simplify the entries and shorten the file that contains this page, I introduced several shorthands as listed below. These are used to express numbers with a single 4:
where brackets denote the whole part function. ([x] is the largest integer not exceeding x.)
Now, let's agree to use {1},{30},{5},{120},{3} as substitutes for the corresponding formulas. Thus for example, {3} means 3 expressed as [√[√[√√√√√4!!]!]]. Similarly, {5} and {120} stand for 5 and 120, respectively, in terms of the just described expressions.
1 | 4·4/4/4 = (4 + 4)/(4 + 4) = 44/44(1) |
2 | 4/4 + 4/4 = 4/√4 + 4 - 4 |
3 | (4 + 4 + 4)/4 = 4!!/4 + 4/4 = 4!/4!!·4/4 |
4 | 4 + 4·(4 - 4) = 4!!/(4 + 4)·4 |
5 | (4 + 4·4)/4 = 4 + (√4 + √4)/4 |
6 | 4 + (4 + 4)/4 = 4!/4 + 4 - 4 |
7 | 4 + 4 - 4/4 = 4!/4 + 4/4 |
8 | 4 + 4 - 4 + 4 = 4!! + (4 - 4)/4 = (4 + 4)·4/4 |
9 | 4 + 4 + 4/4 = 4/.4 - 4/4 = 4/.(4) + 4 - 4 = (4!/4/√4)√4(1) |
10 | (44 - 4)/4 = 4/.4 - 4 + 4 = 44/4.4(1) |
11 | 44/(√4 + √4) = 4/.4 + 4/4 |
12 | (44 + 4)/4 = 4/.4 + 4/√4 |
13 | 44/4 + √4 = 4!! + 4 + 4/4 |
14 | 4!/4 + 4 + 4 = 4!! + 4 + 4/√4 |
15 | 4·4 - 4/4 = 44/4 + 4(1) = ((√√√4)4! - 4)/4(2) |
16 | 4 + 4 + 4 + 4 = 4·4·4/4 = 44/4/4 = 4! - 4 - 4 |
17 | 4·4 + 4/4 = ((√√√4)4! + 4)/4(2) |
18 | 4·4 + 4 - √4 |
19 | 4! - 4 - 4/4 = 4!!/.4 - 4/4 |
20 | (4! - 4)·4/4 = (4! - 4) + 4 - 4 = (4 + 4/4)·4 |
21 | 4! - 4 + 4/4 = 4!!/.4 + 4/4 |
22 | 4·4 + 4 + √4 = 4/.(4)·√4 + 4 |
23 | 4! - √4 + 4/4 = 4!!/.4 + 4/4 |
24 | 4·4 + 4 + 4 = 4/.4·√4 + 4 |
25 | 4! + (√4 + √4)/4 |
26 | 4! + (4 + 4)/4 |
27 | 4! + 4 - 4/4 = (4·4 - 4)/.4(1) |
28 | 4! + 4 + 4 - 4 = (4! + 4)·4/4 |
29 | 4! + 4 + 4/4 |
30 | 4·4·√4 - √4 = ((√√√4)4! - 4)/√4(2) |
31 | 4!!·4 - 4/4 = ((√√√4)4! - √4)/√4(2) |
32 | 4!!·4 + 4 - 4 |
33 | 4!!·4 + 4/4 = ((√√√4)4! + √4)/√4(2) |
34 | 4/.(4)·4 - √4 = 4·4·√4 + √4 = ((√√√4)4! + 4)/√4(2) |
35 | 4!!/.(√4) - 4/4 = 4! + 44/4 |
36 | 4·(4 + 4) + 4 = 4·4·√4 + 4 |
37 | 4!!/.(√4) + 4/4 |
38 | 4!!/.(√4) + 4/√4 |
39 | 4!!/.√4 - 4/4 |
40 | 4·4/.(4) + 4 = 4!!·(4 + 4/4) = 4!!/.√4 + 4 - 4 |
41 | 4!!/.√4 + 4/4 |
42 | 44 - 4/√4 |
43 | 44 - 4/4 |
44 | 44 + 4 - 4 |
45 | 44 + 4/4 |
46 | 44 + 4/√4 |
47 | 4!·√4 - 4/4 |
48 | 44 + √4 + √4 |
49 | 4!·√4 + 4/4 |
50 | 4!·√4 + 4/√4 |
51 | 4!·√4 + 4 - {1} = (4! - 4 + .4)/.4(1) |
52 | (4! + √4)·4/√4 |
53 | 4!·√4 + 4 + {1} |
54 | 4!·√4 + 4 + √4 |
55 | 44/√4/.4(1) |
56 | 4!·√4 + 4 + 4 = 4! + 4! + 4 + 4(1) |
57 | 44 + [√(4!!·4!)] |
58 | 4!/.4 - 4 + √4(1) |
59 | 4!/.4 - 4/4(1) |
60 | 4·4·4 - 4(1) |
61 | 4!/.4 + 4/4(1) |
62 | 4·4·4 - √4(1) = 4!!√4 - 4/√4 |
63 | 4!!√4 - 4/4 |
64 | 4! + 44 - 4(1) |
65 | 4!!√4 + 4/4 |
66 | 4!/.4 + 4!/4(1) = 4·4·4 + √4(1) |
67 | 4!!√4 + 4 - {1} |
68 | 4·4·4 + 4(1) |
69 | 4!!√4 + 4 + {1} |
70 | 44 + 4! + √4(1) |
71 | (4! + 4 + .4 )/.4(1) |
72 | (4!·4!)/(4 + 4)(1) |
73 | 4!!/.4 + [√(4!!·4!)] |
74 | 4!·4 - 4! - √4(1) |
75 | (4! + 4 + √4)/.4(1) |
76 | 4!·4 - 4! + 4(1) = (4! - 4)·4 - 4 = 4!!/.4·4 - 4 |
77 | (4!!)√4 + [√(4!!·4!)] |
78 | (4! - 4)·4 - √4(1) |
79 | (4! - 4)·4 - {1} |
80 | (44 - 4!)·4(1) = 4!!/.4·4·{1} |
81 | (4 - 4/4)4(1) |
82 | (4! - 4)·4 + √4(1) |
83 | 4!·4 - [√(4!!·4!)] |
84 | 44·√4 - 4(1) = (4! - √4)·4 -4(1) = (4! - 4)·4 + 4 = 4!!/.4·4 + 4 |
85 | (4! + 4/.4)/.4(1) |
86 | (4! - √4)·4 - √4(1) |
87 | (4! - √4)·4 - {1} |
88 | 44·(4 - √4)(1) = 4·4·4 + 4!(1) |
89 | (4! - √4)·4 + {1} |
90 | (4! - √4)·4 + √4(1) |
91 | 4!·4 - √4/.4 |
92 | (4! - 4/4)·4(1) |
93 | 4!·4 - [4/√√√4] |
94 | 4!·4 - 4 + √4(1) |
95 | 4!·4 - 4/4(1) |
96 | (4 + 4/4)! - 4!(1) |
97 | 4!·4 + 4/4(1) |
98 | 4!·4 + 4 - √4(1) |
99 | 4!·4 + 4 - {1} = 44/.(44) |
100 | (4! + 4/4)·4(1) = 44/.44(1) |
101 | 4!·4 + √4/.4 |
102 | 4!·4 + 4 + √4 |
103 | 4!·4 + 4!! - {1} |
104 | 4!·4 + 4 + 4 |
105 | 4!·4 + 4!! + {1} |
106 | 4!·4 + 4!! + √4 = 44/.4 - 4 |
107 | 44/.(4) + 4!! |
108 | 4!·4 + 4!! + 4 = 44/.4 - √4 |
109 | 44/.4 - {1} |
110 | 44/.4·{1} |
111 | 44/.4 + {1} |
112 | 44/.4 + √4 |
113 | 44/.4 + {3} |
114 | 44/.4 + 4 |
115 | 44/.4 + {5} |
116 | 4!/.4·√4 - 4 |
117 | 4!/.4·√4 - {3} |
118 | 4!/.4·√4 - √4 |
119 | 4!/.4·√4 - {1} |
120 | 4!/.4·√4·{1} |
121 | 4!/.4·√4 + {1} |
122 | 4!/.4·√4 + √4 |
123 | 4!/.4·√4 + {3} |
124 | 4!/.4·√4 + 4 = (4!!√4 - √4)·√4 = 4!!√4·√4 - 4 |
125 | 4!!√4·√4 - {3} |
126 | 4!!√4·√4 - √4 |
127 | 4!!√4·√4 - {1} |
128 | 4!!√4·√4·{1} |
129 | 4!!√4·√4 + {1} |
130 | 4!!√4·√4 + √4 |
131 | 4!!√4·√4 + {3} |
132 | 4!!√4·√4 + 4 |
133 | 4!!√4·√4 + {5} |
134 | {120} + 4/.4 + 4 = {120} + 4·4 - √4 |
135 | {120} + 4·4 - [√√4] |
136 | {120} + (√4 + √4)·4 = 4!!√4·√4 + 4!! |
137 | {120} + 4/.(4) + 4!! |
138 | {120} + 4·4 + √4 |
139 | {120} + [4·4!/√4!] |
140 | {120} + 4!! + 4!! + 4 = {120} + 4·4 + 4 |
141 | {120} + 4! - 4 + [√√4] |
142 | {120} + 4! - 4/√4 |
143 | {120} + 4! - 4/4 |
144 | {120} + 4! + 4 - 4 = {120} + 4!! + 4!! + 4!! |
145 | {120} + 4! + 4/4 |
146 | {120} + 4! + 4/√4 |
147 | {120} + 4! + 4 - [√√4] |
148 | {120} + 4! + √(4·4) |
149 | {120} + 4! + 4 + [√√4] |
150 | {120} + 4! + 4 + √4 |
151 | {120} + 4!!·4 - [√√4] |
152 | {120} + 4! + 4 + 4 |
153 | {120} + 4!!·4 + [√√4] = {120} + 4! + 4/.(4) |
154 | {120} + 4! + 4/.4 |
155 | {120} + {30} + 4 + {1} |
156 | {120} + {30} + 4 + √4 |
157 | {120} + {30} + 4 + {3} |
158 | {120} + {30} + 4 + 4 |
159 | {120} + {30} + {5} + 4 |
160 | {120} + {30} + {10}·{1} |
161 | {120} + {30} + {10} + {1} |
162 | {120} + {30} + {10} + √4 |
163 | {120} + {30} + {10} + {3} |
164 | {120} + {30} + {10} + 4 |
165 | {120} + {30} + {10} + {5} |
166 | {120} + {30} + 4!! + 4!! |
167 | {120} + 4! + 4! - {1} |
168 | {120} + 4! + 4!·{1} |
169 | {120} + 4! + 4! + {1} |
170 | {120} + 4! + 4! + √4 |
171 | {120} + 4! + 4! + {3} |
172 | {120} + 4! + 4! + 4 |
173 | {120} + 4! + 4! + {5} |
174 | {120} + 4! + 4! + {3}! |
175 | {120} + {30} + 4! + {1} |
176 | {120} + 4! + 4! + 4!! |
177 | {120} + {30} + 4! + {3} |
178 | {120} + {30} + 4! + 4 |
179 | {120} + {30} + 4! + {5} |
180 | {120} + {30} + {30}·{1} = {120} + {120} - {30} - {30} = {30}·{10} - {120}·{1} |
181 | {120} + {30} + {30} + {1} |
182 | {120} + {30} + {30} + √4 |
183 | {120} + {30} + {30} + {3} |
184 | {120} + {30} + {30} + 4 |
185 | {120} + {30} + {30} + {5} |
186 | {120} + {30} + {30} + {3}! |
187 | {120} + 4! · {3} - {5} |
188 | {120} + 4! · {3} - 4 |
189 | {120} + 4! · {3} - {3} |
190 | {120} + 4! · {3} - √4 |
191 | {120} + 4! · {3} - {1} |
192 | {120} + 4! + 4! + 4! |
193 | {120} + {26} · {3} - {5} |
194 | {120} + {26} · {3} - 4 |
195 | {120} + {26} · {3} - {3} |
196 | {120} + {26} · {3} - √4 |
197 | {120} + {26} · {3} - {1} |
198 | {120} + {26} · {3} · {1} |
199 | {120} + {26} · {3} + {1} |
200 | {120} + {26} · {3} + √4 |
201 | {120} + {26} · {3} + {3} |
202 | {120} + {26} · {3} + 4 |
203 | {120} + {26} · {3} + {5} |
204 | {120} + {26} · {3} + {3}! |
205 | {120} + {30} · {3} - {5} |
206 | {120} + {30} · {3} - 4 |
207 | {120} + {30} · {3} - {3} |
208 | {120} + {30} · {3} - √4 |
209 | {120} + {30} · {3} - {1} |
210 | {120} + {30} · {3} · {1} |
211 | {120} + {30} · {3} + {1} |
212 | {120} + {30} · {3} + √4 |
213 | {120} + {30} · {3} + {3} |
214 | {120} + {30} · {3} + 4 |
215 | {120} + {30} · {3} + {5} |
216 | {120} + {30} · {3} + {3}! |
217 | {120} + 4! · 4 + {1} |
218 | {120} + 4! · 4 + √4 |
219 | {120} + 4! · 4 + {3} |
220 | {120} + {30} · {3} + {10} = {120} + 4! · 4 + 4 |
221 | {120} + 4! · 4 + {5} |
222 | {120} + 4! · 4 + {3}! |
223 | {120} + {26} ·4 - {1} |
224 | {120} + {120} - 4*4 |
225 | {120} + {120} - {5} · {3} |
226 | {120} + {120} - 4! + {10} |
227 | {120} + {26} ·4 + {3} |
228 | {120} + {26} ·4 + 4 |
229 | {120} + {26} ·4 + {5} |
230 | {120} + {26} ·4 + {3}! |
231 | {120} + {120} - {3} - {3}! |
232 | {120} + {120} - {5} - {3} |
233 | {120} + {120} - 4 - {3} |
234 | {120} + {120} - {3} - {3} |
235 | {120} + {120} - 4 - {1} |
236 | {120} + {120} - 4 · {1} |
237 | {120} + {120} - 4 + {1} |
238 | {120} + {120} - {1} - {1} |
239 | {120} + {120} - {1} · {1} |
240 | {120} · {1} + {120} · {1} |
241 | {120} + {120} + {1} · {1} |
242 | {120} + {120} + {1} + {1} |
243 | {120} + {120} + 4 - {1} |
244 | {120} + {120} + 4 · {1} |
245 | {120} + {120} + 4 + {1} |
246 | {120} + {120} + {3} + {3} |
247 | {120} + {120} + 4 + {3} |
248 | {120} + {120} + {5} + {3} |
249 | {120} + {120} + {3} + {3}! |
250 | {120} + {120} + {5} + {5} |
251 | {120} + {120} + {5} + {3}! |
252 | {120} + {120} + {3} · 4 |
253 | {26} · {5} + {120} + {3} |
254 | {120} + {120} + 4! - {10} |
255 | {120} + {120} + {3} · {5} |
256 | {120} + {120} + 4 · 4 |
257 | {26} · {5} · {2} - {3} |
258 | {120} + {120} + 4! - {3}! |
259 | {120} + {120} + 4! - {5} |
260 | {120} + {120} + {10} + {10} |
261 | {26} · {10} + {1} · {1} |
262 | {26} · {10} + {1} + {1} |
263 | {26} · {10} + {3} · {1} |
264 | {26} · {10} + 4 · {1} |
265 | {26} · {10} + {5} · {1} |
266 | {26} · {10} + {3}! · {1} |
267 | {26} · {10} + {3} + 4 |
268 | {26} · {10} + 4 + 4 |
269 | {26} · {10} + {5} + 4 |
270 | {26} · {10} + {10} · {1} |
271 | {26} · {10} + {10} + {1} |
272 | {26} · {10} + {3}! + {3}! |
273 | {26} · {10} + {5} + 4!! |
274 | {26} · {10} + {10} + 4 |
275 | {26} · {10} + {10} + {5} |
276 | {26} · {10} + {10} + {3}! |
278 | {26} · {10} + 4! - {3}! |
279 | {26} · {10} + 4! - {5} |
280 | {26} · {10} + {10} + {10} |
281 | {26} · {10} + 4! - {3} |
282 | {26} · {10} + 4! - √4 |
283 | {26} · {10} + 4! - {1} |
284 | {26} · {10} + 4! · {1} |
285 | {26} · {10} + 4! + {1} |
286 | {26} · {10} + 4! + √4 |
287 | {26} · {10} + 4! + {3} |
288 | {26} · {10} + 4! + 4 |
289 | {26} · {10} + 4! + {5} |
290 | {26} · {10} + 4! + {3}! |
291 | {26} · {10} + {30} + {1} |
292 | {26} · {10} + 4! + 4!! |
293 | {26} · {10} + {30} + {3} |
294 | {26} · {10} + {30} + 4 |
295 | {26} · {10} + {30} + {5} |
296 | {26} · {10} + {30} + {3}! |
297 | {30} · {10} - {3} · {1} |
298 | {26} · {10} + {30} + 4!! |
299 | {30} · {10} - {1} · {1} |
300 | {30} · {10} · {1} · {1} |
301 | {30} · {10} + {1} · {1} |
302 | {30} · {10} + {1} + {1} |
303 | {30} · {10} + {3} · {1} |
304 | {30} · {10} + {3} + {1} |
305 | {30} · {10} + {5} · {1} |
306 | {30} · {10} + {5} + {1} |
307 | {30} · {10} + {10} - {3} |
308 | {30} · {10} + 4 + 4(1) |
309 | {30} · {10} + {10} - {1} |
310 | {30} · {10} + {10} · {1} |
311 | {30} · {10} + {10} + {1}(1) |
312 | {30} · {10} + {3}! + {3}! |
313 | {30} · {10} + {10} + {3} |
314 | {30} · {10} + {3}! + 4!! |
315 | {30} · {10} + {3}·{5} |
316 | {30} · {10} + 4·4 |
317 | 4! · {26} / √4 + {5}(1) |
318 | {30} · {10} + {3}·{3}! = ({3}·{6})√4 - {6} |
319 | {3}4 · 4 - {5}(1) = ({3}·{6})√4 - {5} |
320 | {30} · {10} + {10} + {10} = ({3}·{6})√4 - 4 |
321 | {3}4 · 4 - {3}(1) = ({3}·{6})√4 - {3} |
322 | {3}4 · 4 - √4(1) = ({3}·{6})√4 - √4 |
323 | {3}4 · 4 - {1}(1) = ({3}·{6})√4 - {1} |
324 | (4 - {1})4 · 4(1) = {3}·{6}·{3}·{6} = {3} · {120} - {30} - {6} |
325 | {3}4 · 4 + {1}(1) = ({3}·{6})√4 + {1} |
326 | {3}4 · 4 + √4(1) = ({3}·{6})√4 + √4 |
327 | {3}4 · 4 + {3}(1) = ({3}·{6})√4 + {3} |
328 | {3}4 · 4 + 4(1) = ({3}·{6})√4 + 4 |
329 | {3}4 · 4 + {5}(1) = ({3}·{6})√4 + {5} |
330 | {3}4 · 4 + {6}(1) = ({3}·{6})√4 + {6} = {3}·{120} - {30}·{1} |
331 | {3}·{120} - {30} + {1} |
332 | {3}·{120} - {30} + √4 |
333 | {3}·{120} - {30} + {3} |
334 | {3}·{120} - {30} + 4 = ({3}·{6})√4 + {10} |
335 | {3}·{120} - {30} + {5} |
336 | {3}·{120} - {30} + {6} |
337 | {3}·{120} - {26} + {3} |
338 | {3}·{120} - {26} + 4 |
339 | {3}·{120} - {26} + {5} |
340 | {3}·{120} - {30} + {10} = {3}·{120} - {26} + {6} |
341 | {3}·{120} - 4! + {5} |
342 | {3}·{120} - 4! + {6} |
343 | ({6} + {1}){3}·{1} |
344 | {3}·{120} - {26} + {10} |
345 | ({6} + {1}){3} + √4 |
346 | ({6} + {1}){3} + {3} |
347 | ({6} + {1}){3} + 4 |
348 | ({6} + {1}){3} + {5} |
349 | ({6} + {1}){3} + {6} |
350 | {3}·{120} - {10}·{1} |
351 | {3}·{120} - {10} + {1} |
352 | {3}·{120} - {10} + √4 |
353 | {3}·{120} - {10} + {3} |
354 | {3}·{120} - {10} + 4 |
355 | {3}·{120} - {10} + {5} |
356 | {3}·{120} - {10} + {6} |
357 | {3}·{120} - {3}·{1} |
358 | {3}·{120} - {1} - {1} |
359 | {3}·{120} - {1} · {1} |
360 | {3}·{120} - {1} + {1} |
361 | {3}·{120} + {1} · {1} |
362 | {3}·{120} + {1} + {1} |
363 | {3}·{120} + {3} · {1} |
364 | {3}·{120} + 4 · {1} | 365 | {3}·{120} + {5} · {1} |
366 | {3}·{120} + {6} · {1} |
366 | {3}·{120} + {6} · {1} |
367 | {3}·{120} + {6} + {1} = ({6} + {1}){3} + 4! |
368 | {3}·{120} + {6} + √4 |
369 | {3}·{120} + {6} + {3} = ({6} + {1}){3} + {26} |
370 | {3}·{120} + {10}·{1} |
371 | {3}·{120} + {10} + {1} |
372 | {3}·{120} + {10} + √4 |
373 | {3}·{120} + {10} + {3} |
374 | {3}·{120} + {10} + 4 |
375 | {3}·{120} + {10} + {5} |
376 | {3}·{120} + {10} + {6} |
377 | {3}({120} + 4) + {5}(3) |
378 | {3}·{120} + 4! - {6} = {3}({120} + 4) + {6} |
379 | {3}·{120} + 4! - {5} |
380 | {3}·{120} + {10} + {10} |
381 | {3}{120} + {26}- {5} |
382 | {3}({120} + 4) + {10} |
383 | 4!·4·4 - [√√4](4) |
384 | {3}({120} + {30}) - {6} |
385 | {3}({120} + {5}) + {10} = 4!·4·4 + [√√4](4) |
386 | 4!·4·4 + √4(4) |
(1) By Andre Gustavo dos Santos, Brasil
(2) By Richard Tschumpel, Vienna, Austria
On Internet
|Contact| |Front page| |Contents| |Up| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny
72083757