A Straightedge Construction of the Midpoint of a Chord Common to Two Circles

What Is This About?

Problem

A Straightedge Construction of the Midpoint of a Chord Common to Two Circles, problem

Solution

In the diagram below, $\angle \beta=\angle \gamma,$ as two inscribed angles subtended by the same chord $OL$ (not shown.) For the same reason, $\angle \gamma=\angle\delta,$ so that, by transitivity, $\angle \beta=\angle\delta.$

A Straightedge Construction of the Midpoint of a Chord Common to Two Circles, solution

It follows that $AN=BN.$ Similarly, $AO=BO.$ It follows that $AOBN$ is a kite in which the diagonal $NO$ is perpendicular to the diagonal $AB$ and passes through the midpoint of the latter.

Acknowledgment

The problem is by Thanos Kalogerakis who kindly informed me of the problem and later communicated to me the solution by Nikoz Fragkakis.

 

|Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny
[an error occurred while processing this directive]
[an error occurred while processing this directive]