
Date: Mon, 4 Dec 2000 21:57:10 -0500 (GMT)
From: Alexander Bogomolny
I have posted this inequality to the geometry.puzzle newsgroup. Virtually immediately Antreas Hatzipolakis posted the following:
Alexander Bogomolny asked:
>Is this one known too?
>
>sin(A)*sin(B)/sin(C/2)^2 +
>sin(A)*sin(C)/sin(B/2)^2 +
>sin(B)*sin(C)/sin(A/2)^2 >= 9
No, at least to me. So, next time I see it posted, I will refer to Alex Bogomolny's Inequality :-)
Let's prove it:
In cyclical form reads:
sin(B)*sin(C)/sin(A/2)^2 +
sin(C)*sin(A)/sin(B/2)^2 +
sin(A)*sin(B)/sin(C/2)^2 >= 9
If we de-trigonometrize it, we get:
  s-a     s-b     s-c      9
----- + ----- + ----- >= ---    ( s := semiperimeter)
  a^2     b^2     c^2      4s
==>
-a + b + c    a - b + c    a + b - c         9
------------ + ---------- + ---------- >= ----------
    a^2           b^2          c^2         a + b + c
==>
  b + c       c + a       a + b
(------)^2 + (-----)^2 + (-----)^2 >= 12
    a           b           c
          b + c      b^2 + c^2 + 2bc      4bc
We have: (-----)^2 = ---------------- >= -----
            a              a^2            a^2
etc.
==>
  b + c       c + a       a + b          bc     ca     ab
(----->^2 + (-----)^2 + (-----)^2 >= 4(---- + ---- + ----) =
    a           b           c            a^2    b^2    c^2
        1     1     1
= 4abc(--- + --- + ---) >= 12  QED
       a^3   b^3   c^3
[since for x,y,z > 0 ==> x^3 + y^3 + z^3 >= 3xyz]
Antreas 
P.S. For those who wondered, Antreas arrived at his starting point
using the two inequalities:
                   (s - b)(s - c)    
sin(A/2)sin(A/2) = --------------
                         bc
                   s(s - a)
cos(A/2)cos(A/2) = --------
                      bc

73352198
