Extension of Euclid's Game
Consider the following game:
Start with two positive integers $a$ and $b,$ set $x=u=a$ and $y=v=b,$ and proceed to execute the following steps one at a time:
$\begin{cases} x\leftarrow x-y,\,u\leftarrow u+v, & \mbox{if }x\gt y,\\ y\leftarrow y-x,\,v\leftarrow u+v, & \mbox{if }x\lt y,\\ \mbox{STOP} & \mbox{if } x=y. \end{cases}$
Prove that eventually the process does stop. When it stops, $x=y=\mbox{GCD} (a,b)$ and $\displaystyle\frac{u+v}{2}=\mbox{LCM} (a,b).$
(The left arrow, as in $X\leftarrow Y,$ means the assignment to $X$ of the value of $Y.)$ As usual, $\mbox{GCD} (a,b)$ is the Greatest Common Divisor, $\mbox{LCM} (a,b)$ the Least Common Multiple of $a$ and $b$.
References
- A. Engel, Problem-Solving Strategies, Springer Verlag, 1998, 1.20.
|Contact| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny
Start with two positive integers $a$ and $b,$ set $x=u=a$ and $y=v=b,$ and proceed to execute the following steps one at a time:
$\begin{cases} x\leftarrow x-y,\,u\leftarrow u+v, & \mbox{if }x\gt y,\\ y\leftarrow y-x,\,v\leftarrow u+v, & \mbox{if }x\lt y,\\ \mbox{STOP} & \mbox{if } x=y. \end{cases}$
Prove that eventually the process does stop. When it stops, $x=y=\mbox{GCD} (a,b)$ and $\displaystyle\frac{u+v}{2}=\mbox{LCM} (a,b).$
Solution
The two claims (that the process stops and, when it does, $x=y=\mbox{GCD} (a,b))$ is just a reformulation of Euclid's game. Let's focus on proving that at the end $\displaystyle\frac{u+v}{2}=\mbox{LCM} (a,b).$
Observe that the expression $P=xv+yu$ remains invariant at every step of the process. Indeed, if $x\gt y,$ then $(x-y)v+y(u+v)=xu+yv.$ If $x\lt y,$ then $x(u+v)+(y-x)v=xu+yv.$ Note also that the beginning $P=2ab.$ Now, when $x=y$ we get
$\displaystyle 2ab=xv+yu=x(u+v)=\mbox{GCD}(a,b)\cdot 2\frac{u+v}{2},$
such that $\displaystyle \frac{u+v}{2}=\frac{ab}{\mbox{GCD} (a,b)}$ which exactly means that $\displaystyle\frac{u+v}{2}=\mbox{LCM} (a,b).$
|Contact| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny
72190271