Euler Line through a Vertex
Source
Problem
$DEF$ is a cevian triangle of Gergonne's point $G_e$ in $\Delta ABC.$
Prove that the internal angle bisector of A is the Euler line of $\Delta AFE.$
Solution
Let $a=y+z,$ $b=x+z,$ $c=x+y.$ We have $E=(z,0,x)$ and $F=(y,x,0),$ from which the centroid of $\Delta AEF,$ is
$G_{\Delta AEF}=(k,x(x+z),x(x+y))$
for some $k.$ Also,
$I=I_{\Delta ABC}=(y+z,x+z, x+y).$
So that
$\left|\begin{array}{ccc}1&0&0\\k&x(x+z)&x(x+y)\\y+z&x+z&x+y\end{array}\right|=0,$
It follows that $G_{\Delta AEF}\in OI,$ but clearly $O_{\Delta AEF}\in AI,$ and we are done.
Acknowledgment
This porblem by Kadir Altintas has been kindly communicated to me by Leo Giugiuc, along with a soltion of his; the problem previuosly posted at the Peru Geometrico facebok group.
|Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny71946128