CTK Exchange
Front Page
Movie shortcuts
Personal info
Awards
Reciprocal links
Terms of use
Privacy Policy

Interactive Activities

Cut The Knot!
MSET99 Talk
Games & Puzzles
Arithmetic/Algebra
Geometry
Probability
Eye Opener
Analog Gadgets
Inventor's Paradox
Did you know?...
Proofs
Math as Language
Things Impossible
My Logo
Math Poll
Other Math sit's
Guest book
News sit's

Recommend this site

Manifesto: what CTK is about Search CTK Buying a book is a commitment to learning Table of content |Store| Things you can find on CTK Chronology of updates Email to Cut The Knot Recommend this page

CTK Exchange

Subject: "Recomb. Binom. Tree"     Previous Topic | Next Topic
Printer-friendly copy     Email this topic to a friend    
Conferences The CTK Exchange College math Topic #516
Reading Topic #516
Ralph Boles
guest
Jun-28-05, 04:49 PM (EST)
 
"Recomb. Binom. Tree"
 
   Hello everyone;

I am wondering about the following issue. I am working with a binomial tree model for a valuation. Basically v1=1, and in each period, with probability p the valuation moves "up" with probability 1-p the valuation moves "down"; moving up means that the valuation is multiplied by a factor u, moving down means it is multiplied by a factor "d"

I am interested in passing to the continuous limit. So baiscally chop the time period T into N pieces and take the limit as N-->infinity.

For that we need functions u(N), d(N) It is easy to verify that when p=1/2 using functions e^mDT sroot(DT), e^mDT-sroot(DT) leads to a geometric brownian motion, but not for p<>1/2

are there some functional forms for u(N),d(N) that would lead to a nice SDE having p as a parameter for any possible value of p?


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
Graham C
Member since Feb-5-03
Jun-30-05, 07:13 AM (EST)
Click to EMail Graham%20C Click to send private message to Graham%20C Click to view user profileClick to add this user to your buddy list  
1. "RE: Recomb. Binom. Tree"
In response to message #0
 
   I don't understand this, though it may well be my fault.

If you say that after a period T there is a probability p the valuation will be multipled by u and a probability (1-p) that it will be multiplied by d, you are saying that at T there are only two possible states.

If you break T into N 'pieces' then if it may go up or down at each of the N, then there are multiple (N plus 1) possible outcomes with differing probabilities. So your initial statement is now invalid.

If you want there to be only two possible outcomes, then at each N it must either always go 'up' or always go 'down'. Only the first period can then be probabilistic (probability p of up): subsequent moves would have to be certain.

In that case (assuming periods are identical apart from the first) the change in valuation at each step must simply be the Nth root of u - or the Nth root of d. The valuation after m steps is then u^(m/N) or d^(m/N).

But I'm sure you must have meant something different.


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
Ralph Boles
guest
Jun-30-05, 00:05 AM (EST)
 
2. "Recomb. Binom. Tree"
In response to message #1
 
   At time 1 the state is 1.
At time 2 the state is u w/prob p, d w/ prob 1-p
At time 3 the state is u^2 w/ prob p^2, d^2 w/prob (1-p)^2, ud w/ prob 2p(1-p)

but conditional on being in state k at time t, at time t+1 it is in state uk w/ prob p, and in state dk w/ prob 1-p and 0 on all others.

hope that makes more sense


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
Graham C
Member since Feb-5-03
Jul-04-05, 07:52 AM (EST)
Click to EMail Graham%20C Click to send private message to Graham%20C Click to view user profileClick to add this user to your buddy list  
3. "RE: Recomb. Binom. Tree"
In response to message #2
 
   >At time 1 the state is 1.
>At time 2 the state is u w/prob p, d w/ prob 1-p
>At time 3 the state is u^2 w/ prob p^2, d^2 w/prob (1-p)^2,
>ud w/ prob 2p(1-p)
>
>but conditional on being in state k at time t, at time t+1
>it is in state uk w/ prob p, and in state dk w/ prob 1-p and
>0 on all others.
>
>hope that makes more sense

It's a bit clearer.

However, at time t it will be in one of the states (u^n*d^(t-n)), n=0..t, all with non-zero probability. At t+1 it will be in one of the states (u^(n+1)*d^(t-n)) with probability p and (u^n*d^(t-n+1)) with probability (1-p).

If by 'uk' and 'dk' you mean (u^(n+1)*d^(t-n)) and (u^n*d^(t-n+1)) respectively then what you're saying is always true.


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
mpdlc
guest
Jul-31-05, 10:51 PM (EST)
 
4. "RE: Recomb. Binom. Tree"
In response to message #0
 
   Hello Ralph, I do not know if you still pursuing the answer,

The problem as you stated, I understand belong to Markov nature.

So I suggest you check in the Web for the two classical ones this type:
The Gambler's Ruin Problem and the Random Walk Problem.

I do believe must be a large number of papers on the subject.

If you cannot find I will search them for you.

Good luck


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top

Conferences | Forums | Topics | Previous Topic | Next Topic

You may be curious to have a look at the old CTK Exchange archive.
Please do not post there.

|Front page| |Contents|

Copyright © 1996-2018 Alexander Bogomolny

Search:
Keywords:

Google
Web CTK