CTK Exchange
Front Page
Movie shortcuts
Personal info
Awards
Reciprocal links
Terms of use
Privacy Policy

Interactive Activities

Cut The Knot!
MSET99 Talk
Games & Puzzles
Arithmetic/Algebra
Geometry
Probability
Eye Opener
Analog Gadgets
Inventor's Paradox
Did you know?...
Proofs
Math as Language
Things Impossible
My Logo
Math Poll
Other Math sit's
Guest book
News sit's

Recommend this site

Manifesto: what CTK is about Search CTK Buying a book is a commitment to learning Table of content Products to download and subscription Things you can find on CTK Chronology of updates Email to Cut The Knot Recommend this page

CTK Exchange

Subject: "geometry"     Previous Topic | Next Topic
Printer-friendly copy     Email this topic to a friend    
Conferences The CTK Exchange High school Topic #360
Reading Topic #360
mar
guest
Feb-22-07, 08:09 AM (EST)
 
"geometry"
 
   SUPPOSING THAT WE HAVE A FLAG WITH THE ONE SURFACE BLACK AND THE OTHER WHITE AND WE CUT A PIECE OF IT IN SHAPE OF SCALENE TRIANGLE,THEN IS THERE ANY WAY TO TURN OVER THE TRIANGLE SO THAT COVERS EXACTLY BOTH THE WHITE AND BLACK SIDE OF THE FLAG?THINK ABOUT EACH KIND OF TRIANGLE CONCERNING THE ANGLES BUT NOT ABOUT AN ISOSCELES OF COURSE


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top

  Subject     Author     Message Date     ID  
  RE: geometry Kenneth Ramsey Feb-22-07 1
  RE: geometry MAR Feb-23-07 2
     RE: geometry mar Feb-24-07 4
         RE: geometry Kenneth Ramsey Feb-24-07 5
             RE: geometry mar Mar-02-07 6
                 RE: geometry sfwc Mar-03-07 7
                     RE: geometry mar Mar-04-07 8
                         RE: geometry alexbadmin Mar-05-07 9
  RE: geometry alexbadmin Feb-23-07 3

Conferences | Forums | Topics | Previous Topic | Next Topic
Kenneth Ramsey
guest
Feb-22-07, 11:04 PM (EST)
 
1. "RE: geometry"
In response to message #0
 
   Well if the three different angles of the triangle are labeled a,b,c in clockwise order, in what order do the angles a,b,c appear if you turn the triangle over to its opposite side? Clockwise or counter clockwise?
You should be able to get the answer to your question on the basis of this test.


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
MAR
guest
Feb-23-07, 11:16 PM (EST)
 
2. "RE: geometry"
In response to message #0
 
   I WONDER IF YOU COULD EXPLAIN ME MORE DETAILY.MY TEACHER TOLD ME THAT THERE IS A SPECIAL SCALENE THAT CAN FILL EXACTLY THE CUT PIECE OF BLACK SIDE WITH WHITE.WHAT COULD BE THAT?


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
mar
guest
Feb-24-07, 09:20 AM (EST)
 
4. "RE: geometry"
In response to message #2
 
   Sorry about writing in capitals.I mean that if we reverse the scalene triangle of black colour it is able to fill exactly the hole of black side with white colour.The delivering of the problem is itself confusing.


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
Kenneth Ramsey
guest
Feb-24-07, 11:50 PM (EST)
 
5. "RE: geometry"
In response to message #4
 
   I will explain in more detail only after you answer the question I posed. Sorry but the best mode of learning involves at least some effort to try various things, and see what happens. It is easy to see what happens to the clockwise/ counter clockwise order of the angles around the triangle when you flip the triangle over. Try it and report back.


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
mar
guest
Mar-02-07, 11:04 AM (EST)
 
6. "RE: geometry"
In response to message #5
 
   We turn the angles in counter-clockwise order and the triangle is still filling the hole.I have found a solution which has to do with the pericenter of the triangle and it's right in my teacher's opinion but I am searching for an alternative.


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
sfwc
Member since Jun-19-03
Mar-03-07, 07:40 AM (EST)
Click to EMail sfwc Click to send private message to sfwc Click to view user profileClick to add this user to your buddy list  
7. "RE: geometry"
In response to message #6
 
   Did you really mean pericenter?
Could you explain your solution in more detail?

Thankyou

sfwc
<><


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
mar
guest
Mar-04-07, 00:27 AM (EST)
 
8. "RE: geometry"
In response to message #7
 
   If we take on the middle of each side the altitudes then we have three small isosceles triangles.By turning over each of them(IT'S VERY EASY FOR ISOSCELES TRIAGLES) we turn over the whole triangle so as to fill the hole.


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
alexbadmin
Charter Member
1968 posts
Mar-05-07, 00:37 AM (EST)
Click to EMail alexb Click to send private message to alexb Click to view user profileClick to add this user to your buddy list  
9. "RE: geometry"
In response to message #8
 
   You may want to check the link below

https://www.cut-the-knot.org/Curriculum/Geometry/DecoSymmetry.shtml

Starting there you'll find four solutions to your problem.


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top
alexbadmin
Charter Member
1968 posts
Feb-23-07, 11:22 PM (EST)
Click to EMail alexb Click to send private message to alexb Click to view user profileClick to add this user to your buddy list  
3. "RE: geometry"
In response to message #0
 
   >SUPPOSING THAT WE HAVE A FLAG WITH THE ONE SURFACE BLACK AND
>THE OTHER WHITE AND WE CUT A PIECE OF IT IN SHAPE OF SCALENE
>TRIANGLE,THEN IS THERE ANY WAY TO TURN OVER THE TRIANGLE SO
>THAT COVERS EXACTLY BOTH THE WHITE AND BLACK SIDE OF THE
>FLAG?THINK ABOUT EACH KIND OF TRIANGLE CONCERNING THE ANGLES
>BUT NOT ABOUT AN ISOSCELES OF COURSE

To tell you the truth, I do not understand what does covering the sides of the flag mean? Do you mean that the triangle turned upside down is still able of covering the hole?

P.S. Could you please not write in all capitals.


  Alert | IP Printer-friendly page | Reply | Reply With Quote | Top

Conferences | Forums | Topics | Previous Topic | Next Topic

You may be curious to have a look at the old CTK Exchange archive.
Please do not post there.

Copyright © 1996-2018 Alexander Bogomolny

Search:
Keywords:

Google
Web CTK