Circumcevian Triangle
Let P be a point in the plane of ΔABC. Extend the cevians AP, BP and CP to their intersection with the circumcircle of ΔABC. The points of intersection form a triangle, known as the circumcevian and, sometimes, circumpedal, triangle of P. The circumcevian and pedal triangles of the point P are similar.
What if applet does not run? |
For P = H, the orthocenter, the original cevians of ΔABC play the role of angle bisectors in the circumcevian triangle.
|Activities| |Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny
72110009