Midline in Triangle
In a triangle, a midline (or a midsegment) is any of the three lines joining the midpoints of any pair of the sides of the triangle.
In a triangle, the midline joining the midpoints of two sides is parallel to the third side and half as long. Conversely, the line joining points on two sides of a triangle, parallel to its third side and half as long is a midline.
One proof is a direct consequence of Thales' Theorem. Here we offer another proof.
Proof
Let AD = BD and AE = CE. Prove that DE||BC and DE = BC/2.
Extend DE beyond E to F such that DE = EF. Since AE = CE, triangles ADE and CEF are equal, making CF||AB (or CF||BD, which is the same) because, for the transversal AC, the alternating angles DAE and ECF are equal. Also,
Conversely, let D be on AB, E on AC, DE||BC and DE = BC/2. Prove that
This is so because the condition DE||BC makes triangles ADE and ABC similar, with implied proportion,
AB/AD = AC/AE = BC/DE = 2.
It thus follows that AB is twice as long as AD so that D is the midpoint of AB; similarly, E is the midpoint of AC.
Related material
| |
| |
| |
| |
| |
| |
| |
|Contact| |Front page| |Content| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny
71921492