An Anticomplementary Triangle Surprise
What Is It About?
A Mathematical Droodle
29 November 2015, Created with GeoGebra
The applet suggests the following theorem [Honsberger, pp. 276278] from triangle geometry:
On the sides of ΔABC, construct similarly oriented equilateral triangles ABZ, BCX, CAY. In turn, on the sides of ΔXYZ, form triangles XYR, YZP, ZXQ with an orientation opposite to that of ABZ, BCX, CAY. Then ΔPQR is the anticomplementary triangle of ΔABC.
( ΔPQR is anticomplementary to ΔABC if ΔABC is the medial triangle of ΔPQR.)
29 November 2015, Created with GeoGebra
As on several other occasions (e.g., Three Isosceles Triangles, When a Triangle is Equilateral?, and others), we can make a good use of complex numbers. Points X, Y, Z are linear combinations of A, B, C with complex coefficients:
(1) 
X = (1  c)B + cC, Y = (1  c)C + cA, Z = (1  c)A + cB, 
where
c = (1 + i3)/2, 1  c = (1  i3)/2. 
On the other hand, by construction,
P = (1  c)Z + cY, Q = (1  c)X + cZ, R = (1  c)Y + cX. 
In terms of A, B, C these can be written as
(2) 

We want to show that, e.g., PQAB and that C is the midpoint of PQ. From (2),

which tells us that PQ is parallel to AB and is twice as long. Further,
(4) 

so that indeed C is the midpoint of PQ.
References
 Honsberger, In Pólya's Footsteps, MAA, 1999
Activities Contact Front page Contents Geometry Store
Copyright © 19962017 Alexander Bogomolny
62048302 