The 80-80-20 Triangle Problem, A Derivative, Solution #9
$ABC\;$ is an isosceles triangle with vertex angle $\angle BAC = 20^{\circ}\;$ and $AB = AC.\;$ Point $E\;$ is on $AB\;$ such that $AE = BC.\;$ Find the measure of $\angle AEC.$
|Contact| |Front page| |Contents| |Geometry| |Up| |Store|
Copyright © 1996-2018 Alexander Bogomolny
This solution is by Miguel, Ochoa Sanchez, Peru.
Construct an equilateral $\Delta ABD.$
Since $AC=AB=AD,\;$ $\Delta CAD\;$ is isosceles, implying $\angle ACD=\angle ADC=70^{\circ}.$
Further, by SAS, $\Delta EAC=\Delta CBD$ so that $\angle ECA=\angle CDB=10^{\circ}.$ Thus $\angle AEC=\angle BCD=150^{\circ}.$
Here's a variant by Silvia Doandes, a pww:
|Contact| |Front page| |Contents| |Geometry| |Up|
Copyright © 1996-2018 Alexander Bogomolny
73324497