Parallel Lines in Rhombus

What Is This About?

Created with GeoGebra

Source

Parallel Lines in Rhombus, source

Problem

Parallel Lines in Rhombus, problem

Solution

Let $PQ=y+z,\,$ $CQ=x+z,\,$ $CP=x+y.\,$ Then $(O)\,$ is the $C\text{-excircle}\,$ of $\Delta CPQ.\,$ Assume $(O)\,$ touches $CP\,$ at $S.\,$ Then

$\displaystyle \overrightarrow{CS}=\frac{(x+y+z)\overrightarrow{CP}}{x+y}\,$ and $\displaystyle \overrightarrow{CO}=\frac{(x+z)\overrightarrow{CP}+(x+y)\overrightarrow{CQ}}{2x}$

from which $\displaystyle \overrightarrow{CA}=\frac{(x+z)\overrightarrow{CP}+(x+y)\overrightarrow{CQ}}{x}.$

But $\overrightarrow{AT}=-\overrightarrow{CS},\,$ so that $\overrightarrow{AC}+\overrightarrow{CT}=-\overrightarrow{CS},\,$ $\overrightarrow{CT}=\overrightarrow{CA}-\overrightarrow{CS},\,$ $\overrightarrow{CQ}+\overrightarrow{QT}=\overrightarrow{CA}-\overrightarrow{CS},$

$\displaystyle \begin{align} \overrightarrow{QT}&=\overrightarrow{CA}-\overrightarrow{CS}-\overrightarrow{CQ}\\ &=\frac{(x+z)\overrightarrow{CP}+(x+y)\overrightarrow{CQ}}{x}-\frac{(x+y+z)\overrightarrow{CP}}{x+y}-\overrightarrow{CQ}, \end{align}$

which simplifies to $\displaystyle \overrightarrow{QT}=\frac{y}{x(x+y)}\cdot [z\overrightarrow{CP}+(x+y)\overrightarrow{CQ}].$

On the other hand,

$\displaystyle\begin{align} \overrightarrow{PA}&=\overrightarrow{CA}-\overrightarrow{CP}\\ &=\frac{(x+z)\overrightarrow{CP}+(x+y)\overrightarrow{CQ}}{x}-\overrightarrow{CP}\\ &=\frac{1}{x}\cdot[z\overrightarrow{CP}+(x+y)\overrightarrow{CQ}] \end{align}$

which, in particular, proves the claim: $QT\parallel AP.$

Acknowledgment

This problem has been kindly communicated to me by Leo Giugiuc, along with his solution. The problem by Rubén Auqui (Dario) was originally posted at the Peru Geometrico facebook group.

 

|Contact| |Up| |Front page| |Contents| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny

72109847