Centroid and Circumcenter in Isosceles Tetrahedra
Statement
Condition $G=O\,$ is necessary
Let $AB=CD=a,\,$ $AC=BD=b,\,$ $AD=BC=c.\,$ We have $\displaystyle \overrightarrow{AG}=\frac{\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}}{4},$
so that
$\displaystyle\begin{align} AG^2 &= \left(\frac{\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}}{4}\right)^2\\ &=\frac{AB^2+AC^2+AD^2+2\overrightarrow{AB}\cdot\overrightarrow{AC}+2\overrightarrow{AC}\cdot\overrightarrow{AD}+2\overrightarrow{AB}\cdot\overrightarrow{AD}}{16}\\ &=\frac{a^2+b^2+c^2+a^2+b^2-c^2-a^2+b^2+c^2+a^2-b^2+c^2}{16}\\ &=\frac{a^2+b^2+c^2}{8}, \end{align}$
implying $\displaystyle AG=\sqrt{\frac{a^2+b^2+c^2}{8}}.$ Due to the symmetry of the expression, we'd find that $\displaystyle AG=\sqrt{\frac{a^2+b^2+c^2}{8}}=BG=CG-DG,$ making $G\,$ the circumcenter.
Condition $G=O\,$ is sufficient
$\displaystyle\frac{\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}}{4}\,$ such that
$\displaystyle\begin{align} R^2 &= \frac{AB^2+AC^2+AD^2+2\overrightarrow{AB}\cdot\overrightarrow{AC}+2\overrightarrow{AC}\cdot\overrightarrow{AD}+2\overrightarrow{AB}\cdot\overrightarrow{AD}}{16}\\ &=\frac{3(AB^2+AC^2+AD^2)-(BC^2+BD^2+CD^2)}{16}. \end{align}$
Similarly,
$\displaystyle\begin{align} R^2&=\frac{3(AB^2+BC^2+BD^2)-(AC^2+AD^2+CD^2)}{16}\\ R^2&=\frac{3(AC^2+BC^2+CD^2)-(AB^2+AD^2+BD^2)}{16}\\ R^2&=\frac{3(AD^2+BD^2+CD^2)-(AB^2+AC^2+BC^2)}{16}. \end{align}$
All of these give us $AB = CD,\,$ $AC = BD\,$ and $AD = BC.$
Indeed, let $AB^2=u,\,$ $AC^2=v,\,$ $AD^2=w,\,$ $CD^2=m,\,$ $BD^2=n,\;$ and $BC^2=p.\, From
$3(u+v+w)-(p+n+m)=3(u+p+n)-(v+w+m)$
obtain $3(v+w)-(n+p)=3(n+p)-(v+w),\,$ and, subsequently, $v+w=n+p.\,$ Similarly, we get $w+u=p+m\,$ and $u+v=m+n.\,$ The three add up tp $u+v+w=m+n+p,\,$ and by subtracting $u=m,\,$ $v=n,\,$ and $w=p.$
Acknowledgment
|Up| |Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny
71950038