Random Sum


Random Sum

Solution 1

The maximum possible sum is $1+2+\ldots+10=55.$ $45=55-10.$ It is easier to calculate the probability that the sum is at most than $10.$ This would be the sum of numbers written on the coins that fell face down. Just by inspection, there are $43$ combinations of numbers from $1$ to $10,$ each taken at most once, that sum to at most $10.$

Solution 2

Sequence A000009 list, for a given index $N,$ the number of partitions of $N$ into distinct parts:

$\begin{array}{ccccccccccc} N&0&1&2&3&4&5&6&7&8&9&10\\ &1&1&1&2&2&3&4&5&6&8&10 \end{array}$

For example,

$\begin{align} 7&=7+0=6+1=5+2=4+3\\ &=1+2+4\\ 8&=8+0=7+1=6+2=5+3\\ &=1+2+5=1+3+4. \end{align}$

Summing up the eleven numbers in the second row of the above table gives $43,$ as above.

Solution 3

The expansion of the generating function $\displaystyle \prod _{n\in S} \left(1+q^n\right)$ where $S$ is the set under consideration (here $1, 2, \dots, 10$), into polynomials, such as $a_1 q + a_2 q^2 \ldots +a_m q^m$ will produce coefficients that equal the number of distinct partitions of $m$.

We are considering values $\displaystyle 45 \leq j \leq\sum _{i=1}^{10} i=55:$

$\displaystyle\small{\prod _{i=1}^{10} \left(1+q^i\right)=q^{55}+q^{54}+q^{53}+2 q^{52}+2 q^{51}+3 q^{50}+4 q^{49}+5 q^{48}+6 q^{47}+8 q^{46}+10 q^{45}+\ldots},$

with coefficients $\{1,1,1,2,2,3,4,5,6,8,10\}$ that sum to $43$. The total number of tuples under consideration is $2^{10}$. Hence the probability is $\displaystyle \frac{43}{2^{10}}\approx .041992$.

Solution 4

Random Sum, solution 4


This is problem CC252 from the Canadian Crux Mathematicorum (V 44, NO. 1, January 2018). Originally Problem 4, Senior Round part B, of the 2014 BC Secondary Math Contest. Solution 1 has been posted by quite a few people. Solution 2 is by Mike Lawler; Solution 3 is by Robert Frey and N. N. Taleb; Solution 4 is by Humberto Barrios.


|Contact| |Front page| |Contents| |Probability|

Copyright © 1996-2018 Alexander Bogomolny


Search by google: