Center-circles and Their Chains: What Are They?
A Mathematical Droodle

This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at, download and install Java VM and enjoy the applet.

What if applet does not run?

Three lines (in general position) intersect in 3 points; there is 1 circumcircle passing through all three. Out of four lines one can select four triples of lines. The 4 circumcircles meet at a point (Miquel's point) and their centers lie on a circle (Steiner's circle). Five lines contain five quadruples of lines; the centers of their Steiner circles lie on a circle (Kantor's circle.) The general term for all those circles is a center-circle. For 6 lines, there are six sets of 5 lines and 6 center-circles whose centers lie on a circle. Etc.


|Activities| |Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny

[an error occurred while processing this directive]
[an error occurred while processing this directive]