1st proof: (This is the origin of Stathis Koutras’ Theorem)

Let O be the intersection point of two different lines $(a),(b)$ and let M_a, M_b, N_a, N_b be the orthogonal projections of segment MN on $(a),(b)$ respectively. Let A,B be points on $(a),(b)$ (on the same side of the rays), then prove:

\[
\frac{M_a N_a}{M_b N_b} = \frac{OB}{OA} \iff MN \perp AB
\]

\[
\text{Proof}
\]

- **Proof**
- Let \(\frac{M_a N_a}{M_b N_b} = \frac{OB}{OA} \): (1). If $OS \parallel MN$ and let K,L be the orthogonal projections of S on $(a),(b)$ respectively. Then

\[
OK = M_a N_a, OL = M_b N_b \quad \text{(orthogonal projections of equal and parallel segments on the same line or parallel lines are equal)} \quad \text{and} \quad OA' = OL = M_b N_b, OB' = OK = M_a N_a \quad \text{(3) with A',B' on the same sides of rays with initial point O.}
\]

Obviously

\[
\triangle OB'A' = \triangle OKL \Rightarrow \angle B'A'O = \angle OLK = \angle OSK \Rightarrow SO \perp A'B' \quad \text{(4)}
\]

- But \(\frac{OB'}{OA'} = \frac{M_a N_a}{M_b N_b} = \frac{OB}{OA} \quad \text{Thales Th.} \Rightarrow AB \parallel A'B' \Rightarrow MN \perp AB
\]

- Let $MN \perp AB \Rightarrow OS \perp AB$ and let $T = OS \cap AB$, Then the quadrilaterals $ATKS, BTLS$ are cyclic on circles of the same chord TS therefore $OA \cdot OK = OS \cdot OT = OB \cdot OL \Rightarrow \frac{OK}{OL} = \frac{OB}{OA} \Rightarrow \frac{M_a N_a}{M_b N_b} = \frac{OB}{OA}.

Brussels 6 January 2017
Stathis Koutras
2nd proof: Let \(O \) be the intersection point of two different lines \((a),(b)\) and let \(M_a M_b N_a N_b \) be the orthogonal projections of segment \(MN \) on \((a),(b)\) respectively. Let \(A,B \) be points on \((a),(b)\) (on the same side of the rays), then prove: \[
\frac{M_N N_b}{M_a N_a} = \frac{OB}{OA} \iff MN \perp AB
\]

\begin{proof}

\begin{itemize}
\item Let \[
\frac{M_N N_b}{M_a N_a} = \frac{OB}{OA}; (1)
\]
Let \(OS \parallel MN \) and let \(K,L \) be the orthogonal projections of \(S \) on \((a),(b)\) respectively.
Then \[
OK = M_a N_a \cdot OL = M_b N_b; (2)
\]
(orthogonal projections of equal and parallel segments on the same line or parallel lines are equal). Let \(A' = SL \cap (a), B' = SK \cap (b) \).
Then obviously \(S \) is the orthocenter of triangle \(\triangle OA'B' \). \[
\Rightarrow OS \perp A'B'; (3)
\]

From the concyclic points \(K,A',B',L \) \(\Rightarrow OK \cdot OA' = OL \cdot OB' \Rightarrow \)
\[
\frac{OK}{OL} = \frac{OB'}{OA'} \Rightarrow \frac{OB}{OA} = \frac{OB'}{OA'} \Rightarrow AB \parallel A'B' \Rightarrow MN \perp AB
\]

\item Let \(MN \perp AB \Rightarrow OS \perp AB \) and because \(OS \perp A'B' \Rightarrow AB \parallel A'B' \) \[
\Rightarrow \frac{OB}{OA} = \frac{OB'}{OA'} = \frac{OK}{OL} = \frac{M_a N_a}{M_b N_b}
\]
\end{itemize}
\end{proof}

\textbf{Comments:} Translated by Takis Chronopoulos (06 January 2017), The first proof has been published before online, here in Greek http://mathematica.gr/forum/viewtopic.php?p=181515#p181515 (08 August 2013), The second proof is a new one.