Let a_0 \lt a_1 \lt a_2 \ldots be an infinite sequence of positive integers.

Prove that there exists a unique integer n\geq 1 such that

\displaystyle a_n \lt \frac{a_0+a_1+a_2+\cdots+a_n}{n} \leq a_{n+1}.

The solution can be found on a separate page.