Butterfly Trigonometry

Butterflies in quadrilaterals are not much different from butterflies living in circles. And the proof of their existence is readily reduced by affine transformation (shearing) to the case of orthodiagonal quadrilaterals. Two additional (trigonometric) proofs supplied by Sidney Kung (August 13, 2012) establish beyond any doubts the presence of butterflies in orthodiagonal (hence, in other, too) quadrilateral.

Theorem

Through the intersection \(O\) of the mutually perpendicular diagonals \(RS\), \(PQ\) of a convex quadrilateral \(RQSP\), draw two lines \(AB\) and \(CD\) that meet the sides of \(RQSP\) at \(A\), \(B\), \(C\), \(D\). If \(X = AD \cap PQ\), \(Y=CB\cap PQ\), and if \(OP = OQ\), then \(OX = OY\).

The first proof depends on a lemma proved elsewhere

Lemma 1

Let in \(\triangle RST\), \(RU\) be a cevian through vertex \(R\). Introduce angles \(\alpha = \angle SRU\) and \(\beta = \angle URT\). Then

\( \frac{\mbox{sin}(\alpha + \beta)}{RU} = \frac{\mbox{sin}(\alpha)}{RT} + \frac{\mbox{sin}(\beta)}{RS}. \)

Proof 1 of Theorem

Apply the lemma to triangles \(ROQ\), \(SOQ\), and \(BOC):

(1) \(\frac{1}{OC}=\frac{\mbox{sin}(\alpha)}{OR}+\frac{\mbox{cos}(\alpha)}{OQ},\)
(2) \(\frac{1}{OB}=\frac{\mbox{sin}(\beta)}{OS}+\frac{\mbox{cos}(\beta)}{OQ},\)
(3) \(\frac{\mbox{sin}(\alpha +\beta)}{OY}=\frac{\mbox{sin}(\beta)}{OC}+\frac{\mbox{sin}(\alpha)}{OB}.\)

Combining (1)-(3) we obtain

(4) \( \frac{\mbox{sin}(\alpha + \beta)}{OY}= \mbox{sin}(\beta)\left(\frac{OQ\cdot \mbox{sin}(\alpha)+OR\cdot \mbox{cos}(\alpha)}{OR\cdot OQ} \right)+ \mbox{sin}(\alpha)\left(\frac{OQ\cdot\mbox{sin}(\beta)+OS\cdot\mbox{cos}(\beta)}{OS\cdot OQ} \right). \)

Similarly, applying Lemma to triangles \(SOP\), \(ROP\), and \(AOD\), we have

(5) \(\frac{1}{OD}=\frac{\mbox{sin}(\alpha)}{OS}+\frac{\mbox{cos}(\alpha)}{OP},\)
(6) \(\frac{1}{OA}=\frac{\mbox{sin}(\beta)}{OR}+\frac{\mbox{cos}(\beta)}{OP},\)
(7) \(\frac{\mbox{sin}(\alpha +\beta)}{OX}=\frac{\mbox{sin}(\beta)}{OD}+\frac{\mbox{sin}(\alpha)}{OA}.\)

Combining (5)-(7) we obtain

(8) \( \frac{\mbox{sin}(\alpha + \beta)}{OX}= \mbox{sin}(\beta)\left(\frac{OP\cdot \mbox{sin}(\alpha)+OS\cdot \mbox{cos}(\alpha)}{OS\cdot OP} \right)+ \mbox{sin}(\alpha)\left(\frac{OP\cdot\mbox{sin}(\beta)+OR\cdot\mbox{cos}(\beta)}{OP\cdot OR} \right). \)

Remembering that \(OP=OQ\), a comparison of (4) and (8) shows that the right-hand sides are equal, and so are the left-hand sides, implying \(OX=OY\).

Proof 2

Let \(E\) and \(F\) be points symmetric to \(C\) and \(B\) with respect to the line \(RS\). Enlarging the left portion of the diagram

let \(AF\cap OP=Z\). \(F\) being a reflection of \(B\), line \(OP\) bisects \(\angle AOF\). Thus

(9) \( \frac{AF}{ZF}=\frac{AO}{OF}. \)

Note that triangles \(OFD\) and \(OPD\) are co-side (implying they have the same altitude from \(O\)); it follows that

(10) \( \frac{DF}{DP}=\frac{1/2\times OD\times OF\times\mbox{sin}(\theta)}{1/2\times OD\times OP\times\mbox{sin}(\alpha)}=\frac{OF\times \mbox{sin}(\theta)}{OP\times\mbox{sin}(\alpha)}. \)

Similarly, since triangles \(OEP\) and \(OEA\) share side \(OE\),

(11) \( \frac{PE}{EA}=\frac{OP\times \mbox{sin}(\alpha)}{OA\times\mbox{sin}(\theta)}. \)

Multiplying (9), (10), and (11) gives

\( \frac{AZ}{ZF}\frac{DF}{DP}\frac{PE}{EA}=\frac{AO}{OF}\frac{OF}{OP}\frac{OP}{OA}=1. \)

Thus, by the converse of Ceva's Theorem, \(AD\), \(OP\), and \(EF\) are concurrent. Since \(X\) and \(Y\) are on \(PQ\), and \(X\in EF\), \(Y\) must be the symmetric image of \(X\). So, \(OX=OY\).

References

  1. Sidney Kung, A butterfly theorem for quadrilaterals, Math. Mag. 78 (2005), 314

Butterfly Theorem and Variants

  1. Butterfly theorem
  2. 2N-Wing Butterfly Theorem
  3. Better Butterfly Theorem
  4. The Lepidoptera of the Circles
  5. The Lepidoptera of the Quadrilateral
  6. The Lepidoptera of the Quadrilateral II
  7. Butterflies in Ellipse
  8. Butterflies in Hyperbola
  9. Butterflies in Quadrilaterals and Elsewhere
  10. Pinning Butterfly on Radical Axes
  11. Shearing Butterflies in Quadrilaterals
  12. The Plain Butterfly Theorem
  13. Two Butterflies Theorem
  14. Two Butterflies Theorem II
  15. Two Butterflies Theorem III
  16. Algebraic proof of the theorem of butterflies in quadrilaterals
  17. William Wallace's Proof of the Butterfly Theorem
  18. Butterfly theorem, a Projective Proof
  19. Areal Butterflies
  20. Butterflies in Similar Co-axial Conics
  21. Butterfly Trigonometry
  22. Butterfly in Kite
  23. Butterfly with Menelaus
  24. William Wallace's 1803 Statement of the Butterfly Theorem
  25. Butterfly in Inscriptible Quadrilateral

|Contact| |Front page| |Contents| |Geometry| |Store|

Copyright © 1996-2015 Alexander Bogomolny

 49552075

Google
Web CTK