Area of Cutoff Triangles
Given $\Delta ABC$ and points $M,$ $N,$ $P$ on the sides $BC,$ $AC,$ and $AB,$ respectively. We are interested in three cutoff triangles, $NAP,$ $PBM,$ and $MCN.$
Prove that the area of at least one of triangles $NAP,$ $PBM,$ $MCN$ does not exceed $\frac{1}{4}[\Delta ABC].$
This is problem 15.40 from V. V. Prasolov, Problems in Geometry, v 2.
Solution
As usual $[F]$ denotes the area of shape $F.$ Set $S=[\Delta ABC],$ $S_A==[\Delta NAP],$ $S_B==[\Delta PBM],$ and $S_C==[\Delta MCN].$ Then by the sine formula for the area,
$\displaystyle\frac{S_A}{S}=\frac{AP\cdot AN}{AB\cdot AC},$ $\displaystyle\frac{S_B}{S}=\frac{BP\cdot BM}{AB\cdot BC},$ $\displaystyle\frac{S_C}{S}=\frac{CM\cdot CN}{BC\cdot AC}.$
It follows that
$\displaystyle\frac{S_A\cdot S_B\cdot S_C}{S^3}=\frac{AP\cdot BP}{AB^2}\cdot \frac{BM\cdot CM}{BC^2}\cdot\frac{CN\cdot AN}{AC^2}.$
Now apply $\displaystyle ab\le\frac{1}{4}(a+b)^2$ to the three fractions on the right:
$\displaystyle\frac{S_A}{S}\cdot \frac{S_B}{S}\cdot \frac{S_C}{S}\le\left(\frac{1}{4}\right)^3.$
Which says that not all fractions on the left may exceed $\displaystyle\frac{1}{4}.$
- An Inequality for Grade 8
- An Extension of the AM-GM Inequality
- Schur's Inequality
- Newton's and Maclaurin's Inequalities
- Rearrangement Inequality
- Chebyshev Inequality
- A Mathematical Rabbit out of an Algebraic Hat
- An Inequality With an Infinite Series
- An Inequality: 1/2 * 3/4 * 5/6 * ... * 99/100 less than 1/10
- A Low Bound for 1/2 * 3/4 * 5/6 * ... * (2n-1)/2n
- An Inequality: Easier to prove a subtler inequality
- Inequality with Logarithms
- An inequality: 1 + 1/4 + 1/9 + ... less than 2
- Inequality with Harmonic Differences
- An Inequality by Uncommon Induction
- From Triangle Inequality to Inequality in Triangle
- Area Inequality in Triangle II
- An Inequality in Triangle
- Hlawka's Inequality
- An Application of Hlawka's Inequality
- An Inequality in Determinants
- An Application of Schur's Inequality
- An Inequality from Tibet
- Application of Cauchy-Schwarz Inequality
- Area Inequalities in Triangle
- An Inequality from Tibet
- An Inequality with Constraint
- An Inequality with Constraints II
|Contact| |Front page| |Contents| |Inequalities| |Geometry| |Store|
Copyright © 1996-2015 Alexander Bogomolny
| 49551911 |

