Area of Cevian Triangle
Let $AM,$ $BN,$ $CP$ be concurrent cevians in $\Delta ABC.$ Assume that point $D$ of concurrence has the barycentric coordinates $(\alpha :\beta :\gamma),$ $\alpha +\beta +\gamma=1.$
Then
$\displaystyle[\Delta MNP] = \frac{2\alpha\beta\gamma}{(\alpha +\beta )(\beta +\gamma )(\gamma +\alpha )}[\Delta ABC],$
where $[F]$ denotes the area of shape $F.$
Proof
Elsewhere we derived the formula for the area of $\Delta K_1K_2K_3,$ where $K_i =(u_i:v_i:w_i),$ $u_i+v_i+w_i=1,$ $i=1,2,3:$
$[\Delta K_1K_2K_3]=\left| \begin{array} \;u_1 & v_1 & w_1\\ u_2 & v_2 & w_2\\ u_3 & v_3 & w_3 \end{array} \right|[\Delta ABC].$
For $D=(\alpha :\beta :\gamma),$ $M=(0:\beta :\gamma),$ $N=(\alpha :0:\gamma),$ $P=(\alpha :\beta :0)$ which after the normalization appear as
$\displaystyle M=\frac{1}{\beta +\gamma}(0:\beta :\gamma),$ $\displaystyle N=\frac{1}{\alpha +\gamma}(\alpha :0:\gamma),$ $\displaystyle P=\frac{1}{\alpha +\beta}(\alpha :\beta :0)$
the formula gives
$\displaystyle\begin{align} [\Delta MNP] &=\frac{1}{(\alpha +\beta )(\beta +\gamma )(\gamma +\alpha )}\left| \begin{array} \;0 & \beta & \gamma\\ \alpha & 0 & \gamma\\ \alpha & \beta & 0 \end{array} \right|[\Delta ABC]\\ &=\frac{2\alpha\beta\gamma}{(\alpha +\beta )(\beta +\gamma )(\gamma +\alpha )}[\Delta ABC]. \end{align}$
It is now easy to estimate the area of the cevian triangle:
$\displaystyle [\Delta MNP]\le \frac{1}{4}[\Delta ABC].$
This follows from the inequality for $a,b,c\gt 0:$
$(a+b)(b+c)(c+a)\ge 8abc,$
with equality only when $a=b=c.$ Indeed, by the AM-GM inequality
$\displaystyle\frac{a+b}{2}\frac{b+c}{2}\frac{c+a}{2}\ge \sqrt{ab}\sqrt{bc}\sqrt{ac}=abc.$
It follows that the only time when the area of a cevian triangle equals $\displaystyle\frac{1}{4}[\Delta ABC]$ is when $D=(1:1:1),\;$ i.e., when $D$ is the centroid of $\Delta ABC.$
- An Inequality for Grade 8
- An Extension of the AM-GM Inequality
- Schur's Inequality
- Newton's and Maclaurin's Inequalities
- Rearrangement Inequality
- Chebyshev Inequality
- A Mathematical Rabbit out of an Algebraic Hat
- An Inequality With an Infinite Series
- An Inequality: 1/2 * 3/4 * 5/6 * ... * 99/100 less than 1/10
- A Low Bound for 1/2 * 3/4 * 5/6 * ... * (2n-1)/2n
- An Inequality: Easier to prove a subtler inequality
- Inequality with Logarithms
- An inequality: 1 + 1/4 + 1/9 + ... less than 2
- Inequality with Harmonic Differences
- An Inequality by Uncommon Induction
- From Triangle Inequality to Inequality in Triangle
- Area Inequality in Triangle II
- An Inequality in Triangle
- Hlawka's Inequality
- An Application of Hlawka's Inequality
- An Inequality in Determinants
- An Application of Schur's Inequality
- An Inequality from Tibet
- Application of Cauchy-Schwarz Inequality
- Area Inequalities in Triangle
- An Inequality from Tibet
- An Inequality with Constraint
- An Inequality with Constraints II
Barycenter and Barycentric Coordinates
- 3D Quadrilateral - a Coffin Problem
- Barycentric Coordinates
- Barycentric Coordinates: a Tool
- Barycentric Coordinates and Geometric Probability
- Ceva's Theorem
- Determinants, Area, and Barycentric Coordinates
- Maxwell Theorem via the Center of Gravity
- Bimedians in a Quadrilateral
- Simultaneous Generalization of the Theorems of Ceva and Menelaus
- Three glasses puzzle
- Van Obel Theorem and Barycentric Coordinates
- 1961 IMO, Problem 4. An exercise in barycentric coordinates
- Centroids in Polygon
- Center of Gravity and Motion of Material Points
- Area of Cevian Triangle
|Contact| |Front page| |Contents| |Inequalities| |Geometry| |Store|
Copyright © 1996-2015 Alexander Bogomolny
| 49552047 |

