An Area Inequality
Let a, b, u, v be positive real numbers, such that av - bu = 1. Prove that
a² + b² + u² + v² + au + bv ≥ 3/2.
|Contact| |Front page| |Contents| |Geometry| |Store|
There may be many ways to prove the required inequality, but one starts with a recognition of the expression
How does this help? Let A = a² + b² + u² + v² + au + bv. Then
2A = (a + u)² + (b + v)² + a² + b² + u² + v².
Consider one of the triangles in the diagram. Denote its sides X, Y, Z so that, by the Pythagorean theorem
X² = a² + b²,
Y² = u² + v²,
Z² = (a + u)² + (b + v)²,
and 2A = X² + Y² + Z².
Now, we come to a
Lemma
In a triangle with sides X, Y, Z, area S satisfies
S ≤ (X² + Y² + Z²) / 6.
Proof
Let α be the angle formed by X and Y. Then
S = X·Y·sinα/2 = 2X·Y·sinα/4 ≤ [(X - Y)² + 2XY] / 4 = (X² + Y²) / 4.
(This is so simply because, if α is an angle in a triangle then, 0 < sinα ≤ 1, and
Similar inequalities hold for pairs X, Z and Y, Z:
S = ≤ (X² + Y²) / 4,
S = ≤ (Y² + Z²) / 4,
S = ≤ (Z² + X²) / 4.
Adding the three proves the lemma.
Proof of the inequality
Let T be the area of the parallelogram in the diagram. From Lemma,
T/2 ≤ (X² + Y² + Z²) / 6, i.e.
T ≤ (X² + Y² + Z²) / 3.
But, as the problem stipulates, T = 1, so that
X² + Y² + Z² ≥ 3.
But X² + Y² + Z² = 2A = 2(a² + b² + u² + v² + au + bv), implying
a² + b² + u² + v² + au + bv ≥ 3/2.
|Contact| |Front page| |Contents| |Geometry| |Store|
Copyright © 1996-2015 Alexander Bogomolny| 49552202 |

