Miguel Ochoa's van Schooten Is a Slanted Viviani:
An Ultimate Generalization

What Might This Be About?

8 September 2015, Created with GeoGebra


In $\Delta ABC,$ circle $(O)$ through $A$ and cuts $BC$ in $D_1$ and $D_2$ and sides $AB$ and $AC$ in $E$ and $F,$ respectively.

Miguel Ochoa's van Schooten ultimate generalization, problem

Prove that $D_1E + D_1F = AD_2$ and $D_2E + D_2F=AD_1.$


As has been done previously, $\angle D_1FB=\angle AD_2B=\angle D_1EA.$ It thus follows from the slanted Viviani theorem that $D_1E + D_1F = AD_2.$ $D_2E + D_2F=AD_1$ is proved similarly.

Miguel Ochoa's van Schooten ultimate generalization, problem


Gobbalipur Jayanth has shown that his previous proof extends to the case where the given circle is not required to be tangent to the base $BC.$ His proof easily handles the more general case. However, as was observed by Grégoire Nicollier, both follow from the slanted Viviani theorem. Above, we have adopted Grégoire's approach.


Related material

  • Angle Trisectors on Circumcircle
  • Equilateral Triangles On Sides of a Parallelogram
  • Pompeiu's Theorem
  • Pairs of Areas in Equilateral Triangle
  • The Eutrigon Theorem
  • Equilateral Triangle in Equilateral Triangle
  • Seven Problems in Equilateral Triangle
  • Spiral Similarity Leads to Equilateral Triangle
  • Parallelogram and Four Equilateral Triangles
  • A Pedal Property in Equilateral Triangle
  • Miguel Ochoa's van Schooten Like Theorem
  • Two Conditions for a Triangle to Be Equilateral
  • Incircle in Equilateral Triangle
  • When Is Triangle Equilateral: Marian Dinca's Criterion
  • Barycenter of Cevian Triangle
  • Excircle in Equilateral Triangle
  • Converse Construction in Pompeiu's Theorem
  • Wonderful Trigonometry In Equilateral Triangle
  • 60o Angle And Importance of Being The Other End of a Diameter
  • One More Property of Equilateral Triangles
  • Van Khea's Quickie
  • |Contact| |Front page| |Contents| |Geometry| |Generalizations| |Store|

    Copyright © 1996-2017 Alexander Bogomolny


    Search by google: