Let U = x + y, V = x*y , S(n) = x^n + y^n S(n) = U*S(n-1) - V*S(n-2) S(n-1)= U*S(n-2) - V*S(n-3) . . S(6) = U^6 - 6*V*U^4 + 9*V^2*U^2 - 2*V^3 S(5) = U^5 - 5*V*U^3 + 5*V^2*U S(4) = U^4 - 4*V*U^2 + 2*V^2 S(3) = U^3 - 3*U*V = U^3 - 3*U*V S(2) = x^2 + y^2 = U^2 - 2*V S(1) = x + y = U S(0) = 2 For odd n F(n) = x^(n-1) - y*x^(n-2) + y^2*x^(n-3) .... -x*y^(n-2) + y^(n-1) = S(n-1) - V*S(n-3) + V^2*S(n-5) .....+ V^((n-3)/2)*S(1) - V^((n-1)/2) = S(n-1) - V*S(n-3) + V^2*S(n-5) .....+ V^((n-3)/2)*U - V^((n-1)/2) = U*S(n-2) - 2*V*S(n-3) + V^2*S(n-5) + V^((n-1)/2)*U - V^((n-1)/2) F(n) = S(n-1) - V*F(n-2) F(7) = S(6) - V*F(5) = U^6 - 7*V*U^4 + 14*V^2*U^2 - 7*V^3 F(5) = S(4) - V*F(3) = U^4 - 5*V*U^2 + 5*V^2 F(3) = U^2 - 3*V F(1) = 1 F(n) = U*(linear function in U and V) plus or - n*V^((n-1)/2) = (not relatively prime to U) - (relatively prime to U) = (relatively prime to U) Which is what was required.