Golden Ratio in Circle - in Droves

This is always very satisfying to discover a unique underlying reason for apparently independent mathematical facts, especially when it is simple and leads to new discoveries. An example of such discovery was posted on facebook by Bùi Quang Tuån. This is a beautifully simple and general approach to deriving golden ratio constructions.

Consider a unit circle with center $O=(0,0)$ and diameter $AB,$ with $A=(-1,0)$ and $B=(1,0).$ Let $X=(x,0)$ and $Y=(y,0),$ $0\lt x,y\lt 1.$ Define also two points on the circle $C=(x,\sqrt{1-x^{2}})$ and $D=(y,\sqrt{1-y^{2}}).$

golden ratio in a circle - general approach

Let point $M=(m,0)$ be the intersection of $AB$ and $CD$ so that

(1)

$\displaystyle m=\frac{x\sqrt{1 – y^2} + y\sqrt{1 – x^2}}{\sqrt{1 – x^2} + \sqrt{1 – y^2}},$

which could be obtained from similar triangles $MXC$ and $MYD,$ or with a two-point equation of line $CD.$

At this point Bùi Quang Tuån finds the condition for $M$ to divide $BO$ in Golden Ratio: $\displaystyle\frac{BM}{MO}=\phi.$ It could be verified directly from (1) or with wolframalpha that

(2)

$\displaystyle m=\frac{x\sqrt{1 – y^2} + y\sqrt{1 – x^2}}{\sqrt{1 – x^2} + \sqrt{1 – y^2}}$

implies the following relation between $x$ and $y$:

(3)

$\displaystyle x=\frac{2m-ym^{2}-y}{m^{2}-2my+1}.$

To insure $\displaystyle\frac{BM}{MO}$ we should take $m=\displaystyle\frac{1}{1+\phi},$ which yields a simple expression:

(4)

$\displaystyle x=\frac{3y-2}{2y-3}.$

Because of the symmetry between $x$ and $y$ it is also true that

(4')

$\displaystyle y=\frac{3x-2}{2x-3}.$

There are several interesting cases:

  1. $x=0,\,y=2/3.$

    The implied construction has been discussed previously.

  2. $x=-1/2,\,y=7/8.$

    The implied construction has been discussed previously, although the relation is less transparent than before.

  3. $x=1/4,\,y=1/2.$

    This is Kurt Hofstetter Another 5-step division of a segment in the golden section, Forum Geometricorum 4 (2004) 21–22, see also

    Kurt Hofstetter's 5-step golden ratio construction as Bui's

Remark

The second example ($x=-1/2,\,y=7/8)$ leads to a six-step division of a given segment in the Golden Ratio. It reminds of an earlier Kurt Hofstetter division algorithm. Assume it's the $BO$ segment that has to be divided:

Bui's 6-step golden ratio construction

  1. Construct circle $C(O,B)$ centered at $O$ and passing through $B.$
  2. Construct circle $C(B,O)$. The two circles intersect at $G,$ $H.$
  3. Join $GH;$ let $I$ be the intersection of $GH$ with $BO.$
  4. Construct circle $C(B, I);$ let $D$ be its intersection with $C(O,B).$
  5. Construct circle $C(G,B);$ this circle intersects $C(O,B)$ the second time in $C.$
  6. Join $BC;$ its intersection with $BO$ is the sought point $M$ that divides $BO$ in Golden Ratio.

Golden Ratio

  1. Golden Ratio in Geometry
  2. Golden Ratio in an Irregular Pentagon
  3. Golden Ratio in a Irregular Pentagon II
  4. Inflection Points of Fourth Degree Polynomials
  5. Wythoff's Nim
  6. Inscribing a regular pentagon in a circle - and proving it
  7. Cosine of 36 degrees
  8. Continued Fractions
  9. Golden Window
  10. Golden Ratio and the Egyptian Triangle
  11. Golden Ratio by Compass Only
  12. Golden Ratio with a Rusty Compass
  13. From Equilateral Triangle and Square to Golden Ratio
  14. Golden Ratio and Midpoints
  15. Golden Section in Two Equilateral Triangles
  16. Golden Section in Two Equilateral Triangles, II
  17. Golden Ratio is Irrational
  18. Triangles with Sides in Geometric Progression
  19. Golden Ratio in Hexagon
  20. Golden Ratio in Equilateral Triangles
  21. Golden Ratio in Square
  22. Golden Ratio via van Obel's Theorem
  23. Golden Ratio in Circle - in Droves
  24. From 3 to Golden Ratio in Semicircle
  25. Another Golden Ratio in Semicircle
  26. Golden Ratio in Two Squares
  27. Golden Ratio in Two Equilateral Triangles
  28. Golden Ratio As a Mathematical Morsel
  29. Golden Ratio in Inscribed Equilateral Triangles
  30. Golden Ratio in a Rhombus
  31. Golden Ratio in Five Steps
  32. Between a Cross and a Square
  33. Four Golden Circles
  34. Golden Ratio in Mixtilinear Circles
  35. Golden Ratio in Isosceles Right Triangle, Square, and Semicircle

|Contact| |Front page| |Contents| |Geometry| |Up| |Store|

Copyright © 1996-2015 Alexander Bogomolny

 49552083

Google
Web CTK