Non square Matrix as a Tool for Proving an Inequality

Problem

NonSquare Matrix as a Tool for Proving an Inequality

Proof

Define matrix

$\displaystyle A=\left(\begin{array}{cccc}\;\sqrt{a+b} & \sqrt{b+c} & \sqrt{a} & \sqrt{c}\\\sqrt{b} & \sqrt{c} & \sqrt{a+c} & \sqrt{b+c}\end{array}\right).\;$ We have $A\in M_{4,2}(\mathbb{R}).\;$ Further

$AA^t=\left(\begin{array}{cc}\;a+b+b+c+a+c & \sqrt{a(a+b)}+2\sqrt{c(b+c)}+\sqrt{a(a+c)}\\ \sqrt{a(a+b)}+2\sqrt{c(b+c)}+\sqrt{a(a+c)} & a+b+b+c+a+c\end{array}\right).$

$AA^t\in M_2(\mathbb{R}).\;$ By the Cauchy-Binet theorem, $\det (AA^t)\ge 0.\;$ More explicitly,

$AA^t=\left(\begin{array}{cc}\;2a+2b+2c & \sqrt{a(a+b)}+2\sqrt{c(b+c)}+\sqrt{a(a+c)}\\ \sqrt{a(a+b)}+2\sqrt{c(b+c)}+\sqrt{a(a+c)} & 2a+2b+2c\end{array}\right).$

whereas,

$\det(AA^t)=(2a+2b+2c)(a+2b+3c)- (\sqrt{b(a+b)} + 2\sqrt{c(b+c)} + \sqrt{a(c+a)})^2.$ Or, else,

$\det(AA^t)=2(a + b + c)((a + 2b + 3c) - (\sqrt{b(a+b)} + 2\sqrt{c(b+c)} + \sqrt{a(c+a)})^2\ge 0.$

Acknowledgment

The problem and the proof ave been comunicted to me by Dan Sitaru. Both are due to Daniel Sitaru, Leonard Giugiuc, Dr. Tr. Severin, Romania.

 

Related material
Read more...

Linear Algebra Tools for Proving Inequalities

$\;\left(\displaystyle\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2\ge 2\right)$
  • Linear Algebra Tools for Proving Inequalities: Cauchy-Binet Formula $\;\left(\displaystyle\left(\sum_{i=1}^{n}\frac{x_i^2}{a_i}\right)\cdot\left(\sum_{1\le i\lt j\le n}a_ia_j(x_iy_j-x_jy_i)^2\right)\ge \sum_{i=1}^{n}a_iy_i^2\right)$
  • An Inequality from Gazeta Matematica, March 2016 (If $a^2+b^2+c^2=3\,$ then $(a+c)(1+b)\le 4)$
  • An Inequality from Gazeta Matematica, March 2016 II (If $x^2+y^2+z^2+t^2=1\,$ then $\;(x+z)(y+t)\le 4)$
  • An Inequality from Gazeta Matematica, March 2016 III $\;(a^2+b^2+1\ge a+ab+b)$
  • An Inequality from Gazeta Matematica, March 2016 IV (If $a^2+b^2+c^2=1\,$ then $a+ac+b\le 2)$
  • Problem 3980 from Crux Mathematicorum $\;\left(\displaystyle\sum_{cycl}\frac{a+b}{a-b}\prod_{cycl}\frac{a+b}{a-b}\lt\frac{1}{3}\right)$
  • An Inequality in Parallelogram of Unit Area $\;\left(a^2+b^2+c^2+d^2+ac+bd\ge\sqrt{3}\right)$
  • An Inequality from a Vietnamese Problem Book $\;\left(\displaystyle \frac{a^3+2}{b+2c}+\frac{b^3+2}{c+2a}+\frac{c^3+2}{a+2b}\ge 3\right)$
  • Hadamard's Determinant Inequalities and Applications I $\left((2-a-b-c+abc)^2\le (a^2+2)(b^2+2)(c^2+2)\right)$
  • Hadamard's Determinant Inequalities and Applications II $\left((n + a - 1)(a - 1)^{n-1} \le a^n\right)$
  • |Contact| |Front page| |Contents| |Algebra|

    Copyright © 1996-2018 Alexander Bogomolny

    71491957