An Inequality by Uncommon Induction
Prove that for every \(n\gt 1\),
\(\displaystyle 1+\frac{1}{2^2}+\frac{1}{3^2}+\ldots +\frac{1}{n^2}\gt \frac{3n}{2n+1}. \)
|Contact| |Front page| |Contents| |Algebra| |Store|
Copyright © 1996-2015 Alexander Bogomolny
Prove that for every \(n\gt 1\),
\(\displaystyle 1+\frac{1}{2^2}+\frac{1}{3^2}+\ldots +\frac{1}{n^2}\gt \frac{3n}{2n+1}. \)
The first idea that comes to mind is that the method of mathematical induction ought to be of use for the proof. This is indeed so, but not without a workaround. For \(n=1\), the two expressions are equal: \(\displaystyle 1=\frac{3\cdot 1}{2\cdot 1+1}\), and this is why \(n=1\) is excluded. From then on, the two sides grow. The left-hand side grows by \(\displaystyle \frac{1}{n^2}\), the right-hand side grows by
\(\displaystyle \frac{3n}{2n+1} - \frac{3(n-1)}{2(n-1)+1} = \frac{3}{4n^{2}-1}. \)
Now, it is easy to verify that, for \(n\gt 1\), \(\displaystyle \frac{1}{n^2}\gt \frac{3}{4n^{2}-1}\). This exactly means that the left-hand side grows faster than the right-hand side which, thus, proves the inequality.
The two sides monotone increasing as \(n\rightarrow\infty\); the left-hand side is known as Euler series, with the famous value:
\(\displaystyle \sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi ^2}{6}\approx 1.645. \)
This is certainly greater than the limit \(\displaystyle\frac{3}{2}\) of the right-hand side. In itself, though, this is not yet sufficient to prove the inequality for all \(n\gt 1\)!
Jack D'Aurizio came up with another solution. He starts with
\(\displaystyle \sum_{k=2}^{n}\frac{1}{k^2} \lt \sum_{k=2}^{n}\frac{1}{k^2-1/4} = 2\sum_{k=2}^{n}\bigg(\frac{1}{2k-1} - \frac{1}{2k+1}\bigg) = 2\bigg(\frac{1}{3} - \frac{1}{2n+1}\bigg), \)
which holds for \(n\ge 2\). By adding \(1\) to both sides we get:
\(\displaystyle \sum_{k=1}^{n}\frac{1}{k^2} > \frac{10n-1}{6n+3}, \)
which is stronger than the inequality we set out to prove, because \(\displaystyle\frac{10n-1}{6n+3}\gt \frac{3n}{2n+1}\), for \(n\gt 1.\)
If we apply the "telescoping estimation" technique later, we get even stronger inequalities. For example, starting from
\(\displaystyle \sum_{k=3}^{n}\frac{1}{k^2} \lt \sum_{k=3}^{n}\frac{1}{k^2-1/4} = 2\sum_{k=3}^{n}\bigg(\frac{1}{2k-1} - \frac{1}{2k+1}\bigg) = 2\bigg(\frac{1}{5} - \frac{1}{2n+1}\bigg) \)
and by adding \(\displaystyle\frac{5}{4}\) to both sides, we get
\(\displaystyle \sum_{k=1}^{n} \frac{1}{k^2} \gt \frac{66n-7}{20(2n+1)}, \)
which also holds for \(n\gt 1.\) Starting with \(k=4\) and adding \(\displaystyle\frac{5}{4}\) gives
\(\displaystyle \sum_{k=1}^{n} \frac{1}{k^2} \gt \frac{830 n - 89}{252 (2n+1)}, \)
Reference
- R. Honsberger, More Mathematical Morsels, MAA, New Math Library, 1991, 33-35
- An Inequality for Grade 8
- An Extension of the AM-GM Inequality
- Schur's Inequality
- Newton's and Maclaurin's Inequalities
- Rearrangement Inequality
- Chebyshev Inequality
- A Mathematical Rabbit out of an Algebraic Hat
- An Inequality With an Infinite Series
- An Inequality: 1/2 * 3/4 * 5/6 * ... * 99/100 less than 1/10
- A Low Bound for 1/2 * 3/4 * 5/6 * ... * (2n-1)/2n
- An Inequality: Easier to prove a subtler inequality
- Inequality with Logarithms
- An inequality: 1 + 1/4 + 1/9 + ... less than 2
- Inequality with Harmonic Differences
- An Inequality by Uncommon Induction
- From Triangle Inequality to Inequality in Triangle
- Area Inequality in Triangle II
- An Inequality in Triangle
- Hlawka's Inequality
- An Application of Hlawka's Inequality
- An Inequality in Determinants
- An Application of Schur's Inequality
- An Inequality from Tibet
- Application of Cauchy-Schwarz Inequality
- Area Inequalities in Triangle
- An Inequality from Tibet
- An Inequality with Constraint
- An Inequality with Constraints II
|Contact| |Front page| |Contents| |Algebra| |Store|
Copyright © 1996-2015 Alexander Bogomolny
| 49551924 |

