Conditional Probability and Independent Events

The applet below presents an interactive tool that helps grasp the definition and the significance of conditional probabilities and independent events.

 

This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at http://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


Buy this applet
What if applet does not run?

A sample space consists of an array of Nx × Ny dots. The dots are all equiprobable. Two rectangles represents two events, A and B, that can be moved or modified by dragging their sides or corners. Five probabilities are shown in the right side of the applet, P(A), P(B), P(A∩B), P(A|B), P(B|A). The latter two have been defined as

  P(A|B) = P(A∩B) / P(B),
P(B|A) = P(A∩B) / P(A).

The events A and B are said to be independent provided

  P(A|B) = P(A), or, which is the same
P(B|A) = P(B).

Neither the probability of A or B is affected by the occurrence (or a occurrence) of the other event. A symmetric way of expressing the same fact is this

  P(A∩B) = P(A) P(B).

As an example, the events depicted below are independent on the 25×20 sample space:

  Independent events

From the definition, for the dependency or independency of events the total frequencies of the events are as important as their relative frequencies. Switching (in the above example) to the sample space 24×20, say, but by keeping the relative probabilities P(A|B) and P(B|A) intact, turns the dependency on:

  Dependent events

|Contact| |Front page| |Contents| |Probability| |Store|

Copyright © 1996-2015 Alexander Bogomolny

 49551885

Google
Web CTK