Equidecomposition of a Rectangle and a Square:
What is this about?
A Mathematical Droodle


This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at http://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


Buy this applet
What if applet does not run?

Explanation

|Activities| |Contact| |Front page| |Contents| |Geometry| |Store|

Copyright © 1996-2015 Alexander Bogomolny

The applet purports to illustrate a simple fact:

A rectangle can be cut into several pieces which, after translation and rotation, combine into a square of equal area.


The applet only demonstrates this fact for sufficiently elongated rectangle. Rectangles that are nearer a square to start with can be cut into strips that combine into rectangles of the sort the applet handles well, i.e., in which the length is at least twice its width.

Since every triangle is equidecomposable with a rectangle, we can also claim that every triangle is equidecomposable with a square! An even more obvious conclusion is that two rectangles of equal area are equidecomposable. This fact can be established directly and likely in a more economical manner.

(The problem of constructing a square equal in area to a given rectangle has been solved by Euclid's Elements II.14.)

References

  1. G. Frederickson, Dissections: Plane & Fancy, Cambridge University Press, 1997, p. 222

Equidecomposition by Dissiection

|Activities| |Contact| |Front page| |Contents| |Geometry| |Store|

Copyright © 1996-2015 Alexander Bogomolny

 49552025

Google
Web CTK