# Circle through the Incenter And Antiparallels

The applet below illustrates problem 7 from the 2009 Australian Mathematical Olympiad.

Let I be the incenter of a triangle ABC in which AC ≠ BC. Let Γ be the circle passing through A, I and B. Suppose Γ intersects the line AC at A and X and intersects the line BC at B and Y . Show that AX = BY.

The condition AC ≠ BC is obviously a red herring as, in this case,

26 January 2016, Created with GeoGebra

|Activities| |Contact| |Front page| |Contents| |Geometry| |Store|

Copyright © 1996-2017 Alexander Bogomolny

Let I be the incenter of a triangle ABC in which AC ≠ BC. Let Γ be the circle passing through A, I and B. Suppose Γ intersects the line AC at A and X and intersects the line BC at B and Y . Show that

This is a well known fact that a circle through two vertices of a triangle cuts a chord (XY in the applet) antiparallel to the side joining the two vertices (AB in the applet).

In particular this means that ∠BAX = ∠BYX.

These angles are subtended by the arcs BXA and YBX. For the arcs (depending on the layout and assuming J is the second point of intersection of the circle with CI), either

BXA = BJX + XA,

YBX = YB + BJX,

or

BXA = BIX + XA,

YBX = YB + BIX,

In both cases the arcs XA and YB are equal, implying the identity of the subtended chords.

There are five solutions in all:

### What Is Red Herring

- On the Difference of Areas
- Area of the Union of Two Squares
- Circle through the Incenter
- Circle through the Incenter And Antiparallels
- Circle through the Circumcenter
- Inequality with Logarithms
- Breaking Chocolate Bars
- Circles through the Orthocenter
- 100 Grasshoppers on a Triangular Board
- Simultaneous Diameters in Concurrent Circles
- An Inequality from the 2015 Romanian TST
- Schur's Inequality
- Further Properties of Peculiar Circles
- Inequality with Csc And Sin
- Area Inequality in Trapezoid
- Triangles on HO
- From Angle Bisector to 120 degrees Angle
- A Case of Divergence
- An Inequality for the Cevians through Spieker Point via Brocard Angle
- An Inequality In Triangle and Without
- Problem 3 from the EGMO2017

|Activities| |Contact| |Front page| |Contents| |Geometry| |Store|

Copyright © 1996-2017 Alexander Bogomolny

61258223 |