Archimedes' Quadruplets

One of the properties of the arbelos noticed and proved by Archimedes in his Book of Lemmas is that the two small circles inscribed into two pieces of the arbelos cut off by the line perpendicular to the base through the common point of the two small semicircles are equal. The circles have been known as Archimedes' Twin Circles. More than 2200 years after Archimedes, L. Bankoff (1974) has found another circle equal to the twins. In 1999 a large number of additional circles of the same radius has been reported by Dodge et al. More recently, F. Power described another quadruplet of circles that should be adopted into the family. The construction and the proof are exceedingly simple.


This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at http://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


Buy this applet
What if applet does not run?

Form the semicircles on diameters AB, AC, BC, as in the applet above. Let the two smaller semicircles have radii r1 and r2, so that the radius r of the big semicircle satisfies

r = r1 + r2.

Recollect that, according to Proposition 5 of the Book of Lemmas the common radius of Archimedes' Twins equals

r1·r2/r = r1·r2/(r1 + r2).

F. Power's construction is as follows. Let E be the center and D the midpoint of the semicircle of radius r1. (Naturally, a similar construction works for the other semicircle.) Let O be the center of the big semicircle. Then, by the Pythagorean theorem,

OD2 = r12 + r22.

There are two equal circles that touch the big semicircle and OD at D. Let L be the center and x the radius of one of them. Let K denote the point of tangency of the latter with the big semicircle. Then applying the Pythagorean theorem a second time,

OL2 = x2 + OD2 = x2 + r12 + r22.

On the other hand,

OL = OK - x = r - x = r1 + r2 - x.

Combining the two gives

(r1 + r2 - x)2 = x2 + r12 + r22,

from which

- 2x(r1 + r2) + 2r1r2 = 0,

or

x = r1·r2/(r1 + r2),

which is exactly the radius of the Archimedes' Twins.

References

  1. L. Bankoff, Are the Twin Circles of Archimedes Really Twin, Mathematics Magazine, Vol. 47, No. 4 (Sept., 1974), 214-218
  2. C.W. Dodge, T. Schoch, P.Y. Woo, and P. Yiu, Those ubiquitous Archimedean circles, Mathematics Magazine, Vol. 72 (1999), 202-213.
  3. F. Power, Some More Archimedean Circles in the Arbelos, Forum Geometricorum, Vol. 5 (2005) 133-134.

|Activities| |Contact| |Front page| |Contents| |Geometry| |Store|

Copyright © 1996-2015 Alexander Bogomolny

 49552183

Google
Web CTK